
This practice exam was produced by RTD Exam Prep for not-for-profit use by Alberta students and teachers.

7.

The graph shown models a sinusoidal function in the form f(x) = asinx - d, where a > 0 and d > 0. The point P is at a minimum. Consider the following statements:

 R #3
 The true statements are statements number: Enter in any order.

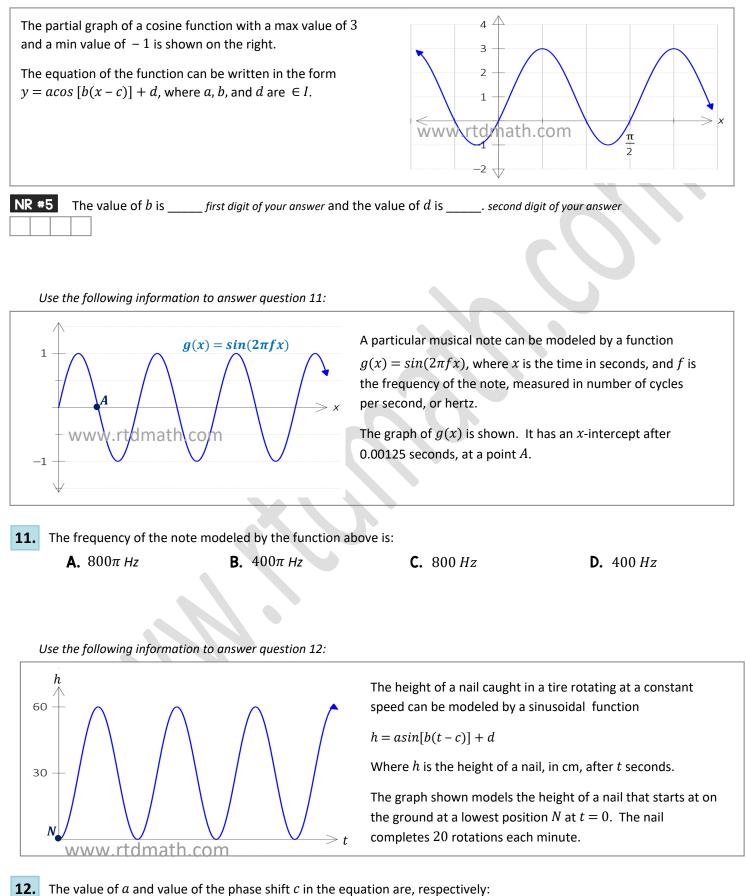
Answers are on the back page Full, worked out solutions can be found at www.rtdmath.com

9. A sinusoidal function has an equation $y = 5sin (4x + \pi)$. The value of the **period** and the **horizontal phase shift** are, respectively:

A. $\frac{\pi}{2}, \frac{\pi}{4}$ **B.** $\frac{\pi}{2}, \pi$ **C.** 4, π **D.** 4, $\frac{\pi}{4}$

NR #4

A sinusoidal function has an f

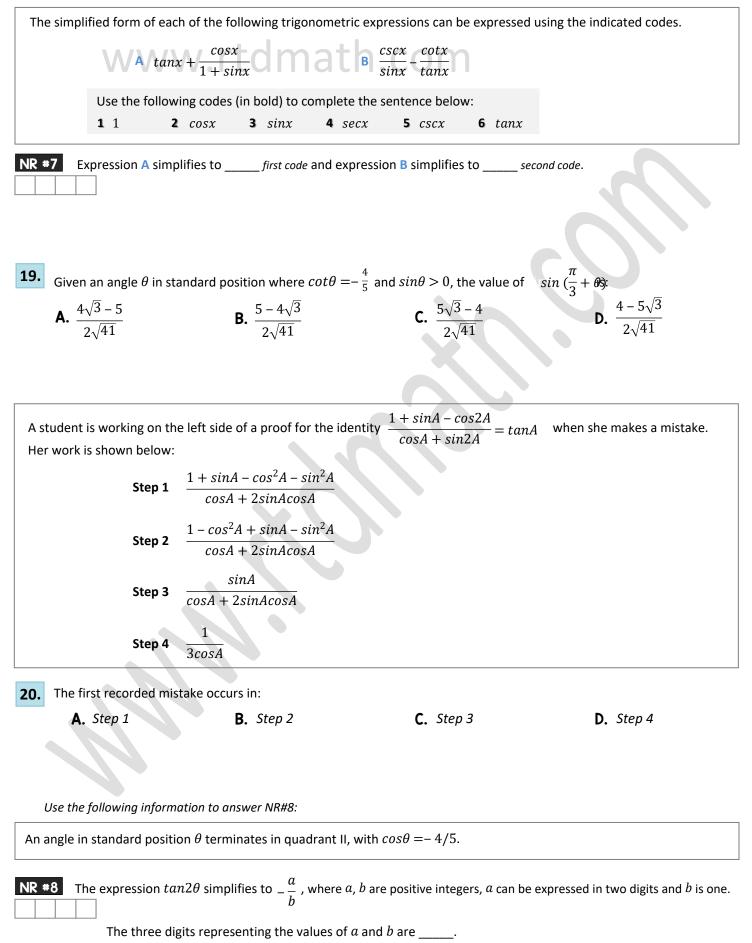

The **period** of the resulting graph, correct to the nearest whole number, is a two-digit number *ab* (*a and b are the first two digits of your answer*)

The **maximum value** of the function, correct to the nearest tenth, is c.d (c and d are the last two digits of your answer)

The values of *a*, *b*, *c* and *d* are:_____

10. The function f(x) = tan(4x) has a domain, where $n \in I$, of:

A. $x \neq \frac{\pi}{4} + \frac{n\pi}{2}$ **B.** $x \neq \frac{\pi}{4} + \frac{n\pi}{4}$ **C.** $x \neq \frac{\pi}{8} + \frac{n\pi}{2}$ **D.** $x \neq \frac{\pi}{8} + \frac{n\pi}{4}$



13. Which of the following steps could lead to a correct solution of the equation $2\cos^2\theta + 3\cos\theta - 2 = 0$?

A.
$$\cos\theta = \frac{1}{2} \operatorname{or} \cos\theta = -2$$
 B. $\cos\theta = \frac{1}{2} \operatorname{or} \cos\theta = -1$ **C.** $\cos\theta = \frac{-1}{2} \operatorname{or} \cos\theta = 2$ **D.** $\cos\theta = \frac{-1}{2} \operatorname{or} \cos\theta = 1$

14. The solution, on
$$\{0 \le x \le 2\pi\}$$
, to $3\csc^2\theta - 4 = 0$ is θ equal to:
A. $\frac{\pi}{3'3}$
B. $\frac{\pi}{3'3}\frac{2\pi 4\pi}{3'3}\frac{5\pi}{3'3}$
C. $\frac{\pi}{6'}\frac{5\pi}{6}$
D. $\frac{\pi}{6'}\frac{5\pi}{6'}\frac{7\pi}{6'}\frac{11\pi}{6}$
15. A general solution of the equation $\sec^2 x - \sec x - 2 = 0$, where $n \in I$ is:
A. $x = \frac{\pi}{3}n$
C. $x = \frac{\pi}{3}n + \frac{2\pi n}{3}$
B. $x = \frac{\pi}{3} + 2\pi n$, $x = \pi n$
D. $x = \frac{\pi}{3} + 2\pi n$, $x = 2\pi n$
16. The solution to the equation $\log_2(\tan x) + \log_2(\cos x) + 1 = 0$, where $\{0 \le x \le 2\pi\}$ is:
A. $x = \frac{\pi}{6'}\frac{5\pi}{6'}\frac{\pi}{2}$
B. $x = \frac{7\pi}{6'}\frac{11\pi}{6}$
C. $x = \frac{\pi}{6'}\frac{5\pi}{6}$
D. $x = \frac{7\pi}{6'}\frac{11\pi}{6'}\frac{\pi}{2}$
IVE G The exact value of the trig ratio $\cos(\frac{\pi}{12})$ can be determined to be an irrational expression in the form $\frac{\sqrt{a} - \sqrt{b}}{c}$
where a, b, c are positive integers.
The value of a is first digit, the value of b is second digit and the value of c is since d is $\frac{3}{\sqrt{34}}$
B. $-\frac{3}{\sqrt{34}}$
C. $\frac{5}{\sqrt{34}}$
D. $\frac{5}{\sqrt{34}}$
D. $\frac{5}{\sqrt{34}}$
13. The non-permissible values of the expression $\frac{\tan x}{1 + \sin x}$ can be best written, where $n \in I$, as:
A. $x = \frac{3\pi}{2} + 2\pi n$
B. $x = \pi n$, $x = \frac{3\pi}{2} + 2\pi n$
C. $x = \frac{\pi}{2} + \pi n$
D. $x = \pi n$, $x = \frac{\pi}{2} + 2\pi n$

Use the following information to answer NR#7:

PART 2 - Written Response

Use the following information to answer WR#1:

An angle in standard position θ passes through a point $P(-5, 1)$ and a second angle in standard position β passes	j
through a point $Q(-3, -4)$.	

* Written Response Question 1

• Fully **sketch** each angle in the correct quadrant labeling all sides of the triangle, and **determine** the value of each angle, correct to the nearest degree. (3 marks)

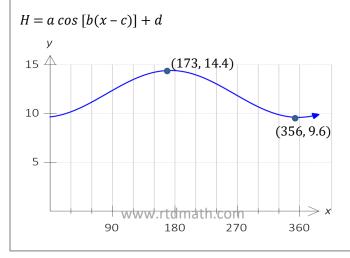
• **Determine** the exact value of $sin(\theta + \beta)$, written in the form $\frac{p}{q}$ (2 marks)

* Written Response Question 2

• Using a trigonometric identity, **simplify** the equation $2sin^2x - cosx - 1 = 0$ to express in terms of one trig function, where the lead coefficient is positive. (2 marks)

• Algebraically solve the resulting equation on $\{0 \le x < 2\pi\}$, and state a general solution. (3 marks)

* Written Response Question 3


• **Prove** the equation $\frac{cscx cosx}{tanx + cotx} = cos^2 x$ is an identity using an algebraic approach. (3 marks)

• Determine each of the possible non-permissible values, in radians. (2 marks)

In San Diego, California the number of hours of daylight follows a sinusoidal pattern where the maximum hours of sunlight is 14.4 hours on day 173 (June 27th), and the minimum hours of sunlight is 9.6 hours on day 356 (Dec 22nd).

The function below is for a particular leap year of 366 days.

The hours of sunlight (H) can be modeled as a cosine function of day number (x):

* Written Response Question 4

• **Determine** the values of a, b, c, and d in the equation $H = a \cos[b(x - c)] + d$ (3 marks)

• The daily high temperature in San Diego can be modeled by the function T = 5.1sin [0.524(d - 2.75)] + 23.9, where T is the temperature in degrees Celsius, and m is the number of months from the start of the year.

Use a graphing approach to **determine** the approximate total number of months, correct to the nearest tenth, where the daily high temperature would be above 26° C. (2 marks)

• A function of similar form to the last bullet is constructed for Calgary Alberta, where the temperatures are much cooler. **Explain** which of the two parameters *a*, *b*, *c*, and *d* would be different, and how. **Justify** your reasoning. (Note, on the actual diploma exam each WR question will have exactly two bullets)

For full, worked-out solutions (as well as other practice materials) visit www.rtdmath.com) This practice exam was produced by RTD Learning for not-for-profit use by Alberta students and teachers

Multiple Choice

1. D 2. B 3. A 4. C 5. C 6. D 7. C 8. B 9. A 10. D 11. D
12. A 13. A 14. B 15. C 16. C 17. D 18. C 19. B 20. A
Numerical Response
1. 3.5 2. 4.5 3. 125 4. 5281 5. 41 6. 264 7. 41 8. 247
Written Response
1. First bullet $\theta = 169^{\circ} \beta = 233^{\circ}$ Second bullet $\frac{17}{5\sqrt{26}}$
2. First bullet $2\cos^2 x + \cos x - 1 = 0$ Second bullet $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$ (any order) $x = \frac{\pi}{3} + \frac{2\pi}{3}n$ $n \in I$ (general sol.)
3. First bullet See full solutions on <u>www.rtdmath.com</u> Second bullet $x \neq \frac{\pi}{2}n$, $n \in I$
4. First bullet $a = 2.4$, $b = \frac{\pi}{183}$, $c = 173$, $d = 12$ Second bullet 4.4 total months above 26°C.
Third bullet a would be higher , as the range of Calgary temperatures (between min and max) would be greater

 $m{d}$ would be **lower**, as the median temperature for Calgary (represented by $m{d}$) would be lower

Also.... (not needed in your answer)

b would be **unchanged**, as the period for each city would be the same (12 months). Similarly, **c** would be essentially unchanged, as the number of months after which the min / max temperature occurs would be approximately the same as both cities are in the northern hemisphere.